

PAEDIATRIC BURNS: RESUSCITATION (MODERATE - SEVERE / COMPLEX)

BURNS = TRAUMA Call trauma team and prepare resuscitation environment ****For First Aid advice see page 2****

Follow C-Spine-ABC trauma algorithm, especially for those with burns > 10% TBSA

Prepare environment: Warm room/ fluids, consider further burn cooling (30m cooling in first 3 hrs post burn)

History: Full history of mechanism, first aid, social & any safeguarding concerns

Examination: Primary survey inc. full set of observations (HR, RR, SpO₂, BP, Temp)

Resuscitation / First Aid: As necessitated by primary survey / pre-hospital burn cooling measures

Estimate % Total Body Surface Area (TBSA) of burn: (see Lund & Browder chart on page 2)

Investigations: Gas (Lac, COHb, MetHb, Glu), FBC, U&E, CK, Group & Save, imaging as indicated

CALCULATE % TBSA

- Lund & Browder Chart (see below)
- Mersey Burns App
- Estimate 1% = area of child's hand

Moderate / Severe $\geq 15\%$

EVALUATE FOR FEATURES OF COMPLEX BURNS

SITE: Face / eyes / hands / feet / joints / perineal / circumferential

DEPTH: Any full thickness (non-blanching, leathery/dry, painless)

MECHANISM: Chemical, radiation, electrical

AGE: < 5 years, especially neonates < 28d

A Assess AIRWAY & C-Spine risk

- **SUSPECT inhalational burns if:** Respiratory distress, stridor or voice changes, soot around nose/mouth, drooling, upper airway oedema or ulceration, facial or neck burns, exposure to fire in enclosed space, steam inhalation
- **Other airway risk factors:** Electrical burns, > 25% TBSA, low or falling GCS
- **Management:** Sit up if C-spine clear, early anaesthetic assessment, prepare for early intubation, do not cut ETT (allows for progressive swelling) and record length at fixed landmark, cotton ties if facial burns
- Avoid Suxamethonium for induction of anaesthesia due to hyperkalaemia risk

B Assess GAS EXCHANGE

- Causes of respiratory failure in burns are: chest wall restriction from eschar, inhalational injury, PARDS and chest wall injury
- **Carbon Monoxide:** COHb on gas > 3%, high SpO₂ with arterial hypoxaemia; manage with 100% O₂ via non-rebreath mask, may require hyperbaric O₂ therapy
- **Cyanide:** Exposure to some burning fabrics; causes persistent lactic acidosis and cardiovascular instability despite fluid resuscitation; manage as per Toxbase guidance

C Assess VOLUME STATUS - Burns do not usually cause hypovolaemia in the acute phase

- Secure 2 sites of IV access - consider IO if difficult access or large burn TBSA %
- Perform 12-lead ECG if electrical burn
- Catheterise early to monitor accurate fluid balance
- If requiring > 40ml/kg fluid resuscitation discuss with SORT, consider alternative causes of shock

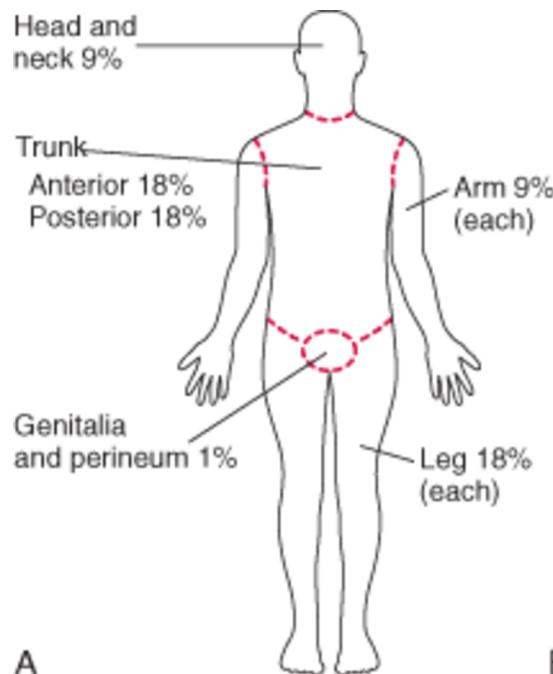
D Closely monitor GCS and ensure adequate analgesia

- If low or falling GCS, consider alternative causes e.g. head injury, toxicity
- Give early adequate analgesia; paracetamol, opiates, consider ketamine infusion, **avoid NSAIDs**
- Consider alternative routes of administration if limited IV access - PR, intranasal, PO

E Fully examine and prevent secondary injury (e.g. compartment syndrome)

- Maintain temperature ~36C
- Ensure secondary survey completed and documented (if unable, clearly hand over)
- Remove any non-adhered clothing and jewellery - if adhered do not attempt to remove
- Limb burns: assess perfusion distal to burn, elevate affected limbs, monitor neurovascular status and discuss early with burns centre if any circumferential wound as may need escharotomy
- Clean and decontaminate cooled burns, photograph if possible prior to dressing (consent)
- Cover with appropriate non-circumferential dressing (specific advice from local burns service)
- Check Tetanus status, antibiotic prophylaxis not generally required

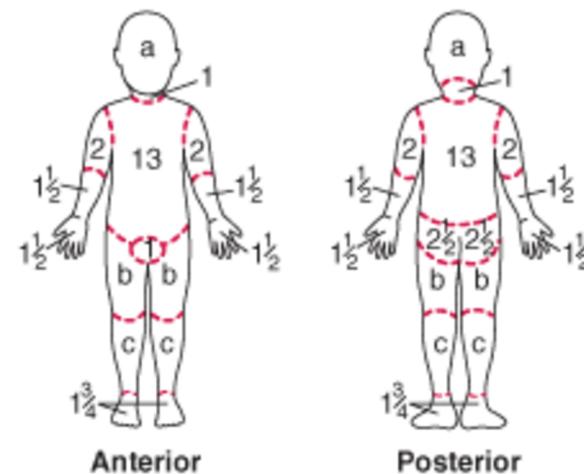
F Fluid management for burns $\geq 15\%$ TBSA


- See box overleaf for calculations

PAEDIATRIC BURNS: RESUSCITATION (MODERATE - SEVERE / COMPLEX)

EARLY FIRST AID ADVICE

- Cool for minimum of 30 minutes within the first 3 hours of injury, ideally under cool running water
- Analgesia as required and as available pre-hospital
- Loosely cover burn in strips of cling-film for transfer to hospital - do not wrap circumferentially


Lund & Browder Chart for estimating %TBSA

A

SUPERFICIAL
Blistered, painful, soft, pink, blanches with pressure
** NOT to be included in TBSA % **

DEEP
Pale, charred, red or black, leathery texture, does not blanch

Relative percentage of body surface area (% BSA) affected by growth

Body Part	Age				
	0 yr	1 yr	5 yr	10 yr	15 yr
a = 1/2 of head	9 1/2	8 1/2	6 1/2	5 1/2	4 1/2
b = 1/2 of 1 thigh	2 3/4	3 1/4	4	4 1/4	4 1/2
c = 1/2 of 1 lower leg	2 1/2	2 1/2	2 3/4	3	3 1/4

FLUID CALCULATIONS

- **Resuscitation Fluid (Modified Parkland Formula) for burns $\geq 15\%$ TBSA**
 - Weight (kg) x TBSA (%) x 2 = first 24hr fluid requirement
 - Give half this volume over the first 8 hours then remaining volume over the next 16 hours
 - Calculate boluses given pre-hospital & during resuscitation, subtract this volume from the initial 8 hour resuscitation fluid volume
- **Maintenance Fluid**
 - First 10kg: 4ml/kg/hr
 - Second 10kg: 2ml/kg/hr
 - Additional 1ml/kg/hr for weight $> 20\text{kg}$
 - Recommended fluid choice = 0.9% NaCl + 5% Dextrose (For neonates < 28 days use 10% dextrose)

TOXIC SHOCK SYNDROME

- Can occur in any burn, any site, any size
- Consider in any child presenting with fever, rash and diarrhoea plus features of shock following a burn
- See [PIER network guideline](#) for further guidance on diagnosis and management

Please note: This is a clinical guideline. See separate guidance for minor burns.
Please utilise appropriate referral pathways for Oxford / Southampton patients